Recycling Agriculture: Valorization of Agricultural Residual MaterialsDepartment of Environmental Engineering / Lin, Kun-Yirew / Distinguished Professor
循環農業:農業剩餘資材及生質衍生物高值化轉換再利用【環境工程學系/林坤儀特聘教授】
論文篇名 英文: Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal
中文:揭示氮、硫共摻雜生物炭作為過一硫酸鹽去除加替沙星活化劑的形成機制與性能
期刊名稱 Chemical Engineering Journal
發表年份,卷數,起迄頁數 2023, 451, 138958
作者 Choong, Zheng-Yi; Gasim, Mohamed Faisal; Lin, Kun-Yi Andrew(林坤儀)*; Hamidon, Tuan Sherwyn; Hussin, Hazwan; Oh, Wen -Da*
DOI 10.1016/j.cej.2022.138958
中文摘要 多雜原子摻雜是提高生物炭催化親和力的一種有前景的方法。在此,使用一鍋煅燒方案在不同溫度下合成了一系列NS共摻雜生物炭(BSN)。對這些 BSN 的理化特性的研究表明,g-C3N4 首先在較低溫度下由前體形成,併吞沒生物炭。在較高的合成溫度下,g-C3N4 分解並與生物炭聚結形成 BSN。評估了 BSN 作為過一硫酸鹽 (PMS) 活化劑去除加替沙星 (GAT) 的性能。結果表明,在800℃下製備的BSNBSN-800)由於其相對較高的比表面積和雜原子之間的協同作用而表現出最佳的性能。開發了基於二階 PMS 消耗和一階 GAT 去除的動力學模型,用於同時描述各種操作條件(包括 BSN-800 負載、PMS 劑量和 pH 值)下的 GAT 去除和 PMS 消耗。與傳統的偽一級動力學相比,所提出的動力學模型具有更好的擬合度。使用化學清除劑和電化學研究確定了主要的 PMS 活化機制,表明涉及 1O2 生成和電子介體機制的非自由基途徑以石墨 N 和噻吩 S 作為活性位點占主導地位。儘管重複使用性有限,BSN-800 仍可有效去除河水、二次水和自來水等各種水基質中的 GAT
英文摘要 Multi-heteroatom doping is a promising approach to increase the affinity of biochar for catalysis. Herein, a series of N, S-codoped biochar (BSN) were synthesized at different temperatures using a one-pot calcination protocol. Investigation on the physiochemical characteristics of these BSNs revealed that g-C3N4 was first formed from the precursors at lower temperature, engulfing the biochar. At higher synthesis temperature, the g-C3N4 decomposed and coalesce with the biochar to form BSN. The performance of BSN as peroxymonosulfate (PMS) activator for gatifloxacin (GAT) removal was evaluated. The results indicated that BSN prepared at 800 °C (BSN-800) exhibited the greatest performance due to its relatively high specific surface area and synergism between heteroatoms. A kinetic model based on the second-order PMS consumption and first-order GAT removal was developed to describe GAT removal and PMS consumption simultaneously at various operating conditions including BSN-800 loading, PMS dosage and pH. The proposed kinetic model has better fit compared to the conventional pseudo first-order kinetics. The major PMS activation mechanism was identified using chemical scavenger and electrochemical studies indicating that the nonradical pathway involving 1O2 generation and electron mediator mechanisms are dominant with graphitic N and thiophenic S acting as the active sites. Despite its restricted reusability, BSN-800 can be used effectively to remove GAT in various water matrixes including river water, secondary water and tap water. The GAT degradation intermediates were identified, and the degradation pathway was also proposed. Overall, this study provides a better understanding on the development of multi-heteroatom-doped biochar as promising catalyst for antibiotics removal.
發表成果與本中心研究主題相關性 透過本研究可進一步建立開發本研究計算所需之觸媒材料,並釐清可適合應用之環境條件!