【學術亮點】可磁回收鐵改性生物炭用於高效磷酸鹽分離:製程優化與 DFT 驗證機制
【學術亮點】Magnetically recoverable iron-modified biochar for high-efficiency phosphate separation: Process optimization and DFT-validated mechanisms
Ecological Agriculture: Optimization and Validation of Soil Carbon Sequestration Prediction ModelsDepartment of Soil Environmental Sciences / Tzou, Yu-Min / Distinguished Professor
生態農業:土壤碳蓄存之預測模型優化及驗證【土壤環境科學系/鄒裕民特聘教授】
論文篇名 英文:Magnetically recoverable iron-modified biochar for high-efficiency phosphate separation: Process optimization and DFT-validated mechanisms
中文:可磁回收鐵改性生物炭用於高效磷酸鹽分離:製程優化與 DFT 驗證機制
期刊名稱 Separation and Purification Technology
發表年份,卷數,起迄頁數 2025, 379, no. 135171
作者 Maisyarah, Selly; Ahmed, M. M. M.; Tseng, Kuan-Ming; Hsu, Liang-Ching; Venkatesan, S.; Hsieh, Yi-Cheng; Hsieh, Jerry; Tzou, Yu-Min(鄒裕民)*; Jien, Shih-Hao
DOI 10.1016/j.seppur.2025.135171
中文摘要 從受污染水體中去除磷酸鹽的高效且可重複使用的吸附劑仍是一項重要的環境挑戰。本研究提出了一種可磁回收的鐵改性酸處理生物炭(Fe-ATB),兼具高吸附性能與簡化的分離與再利用特性。以河岸槐(Leucaena leucocephala)生物質為原料製備的生物炭,經酸洗後再進行鐵負載改性,其孔隙結構顯著改善,比表面積由 68 增加至 102 m²/g,孔體積提高 266%。與未改性及單純酸處理的生物炭相比,Fe-ATB 的磷酸鹽吸附量提升約六倍。更顯著的是,Fe-ATB 的結合親和力較未改性生物炭提高了 17 倍,顯示鐵改性使其與磷酸鹽的相互作用更強且更具專一性。XRD 分析確認形成了磁鐵礦(FeO),鐵氧化物含量約 31%,賦予其在水體中超過 96% 與土壤中 91.2% 的磁回收效率。多技術表徵揭示了先進的結合機制:XANES 顯示 Fe-P 物種成為主要磷形態(60.5%);XPS 證實了通過配體交換與 Fe-O-P 內球配位的雙重吸附途徑,表現為 Fe 2p 結合能從 711.04 eV 移至 710.85 eV,並伴隨 Fe-O 訊號(約 530.28 eV)的增強。密度泛函理論(DFT)計算進一步驗證了這些機制,顯示磷酸鹽結合後電子活性提升,HOMO-LUMO 能隙由 2.56 eV 降至 1.74 eV,且 Fe-P 結合能強勁(181.3 kcal mol¹)。綜上所述,本研究證明 Fe-ATB 是一種具備永續性磷酸鹽治理潛力的技術,具有優異的吸附容量、高效磁分離性能,以及透過可重複循環操作帶來的經濟可行性。
英文摘要 Efficient and reusable adsorbents for phosphate removal from contaminated water remain a critical environmental challenge. This study presents a magnetically recoverable, iron-modified, acid-treated biochar (Fe-ATB) that combines high adsorption performance with simplified separation and reuse. Biochar derived from River tamarind (Leucaena leucocephala) biomass was sequentially modified by acid washing followed by iron loading, which enhanced its textural properties-raising the BET surface area from 68 to 102 m(2)/g and improving pore volume 266 %. Fe-ATB exhibited approximately a six-fold enhancement in phosphate adsorption over both unmodified and acid-treated biochar. Remarkably, Fe-ATB showed a 17-fold increase in binding affinity compared to unmodified biochar, indicating stronger, more specific phosphate-adsorbent interactions through iron modification. XRD confirmed the formation of magnetite (Fe3O4) with similar to 31 % iron oxide loading, enabling magnetic recovery efficiencies of over 96 % in aqueous systems and 91.2 % in soil applications. Multi-technique characterization revealed advanced binding mechanisms: XANES indicated that Fe-P species became the dominant phosphorus form (60.5 %), while XPS confirmed dual adsorption pathways via ligand exchange and Fe-O-P inner-sphere complexation, evidenced by Fe 2p binding energy shifts (711.04 -> 710.85 eV) and intensified Fe-O signals (similar to 530.28 eV). Complementary density functional theory (DFT) calculations further validated these mechanisms, demonstrating enhanced electronic activity with a reduced HOMO-LUMO gap (2.56 -> 1.74 eV) upon phosphate binding and strong Fe-P binding energy (181.3 kcal mol(-1)). Overall, this work establishes Fe-ATB as a promising technology for sustainable phosphate management, offering superior adsorption capacity, efficient magnetic separation, and economic viability through reusable operation cycles.
發表成果與本中心研究主題相關性 本研究在以農業剩餘資材轉變為具磁性的生物炭, 使其與營養元素磷具高親和力, 減少磷的損失及可能進入水體而導致優養化, 同時, 可以磁分離的放是重複利用該生物炭, 成果與中心強調永續環境利用與/生態安全的目標一致