設施農業:光能設施於農業固碳之應用【化學工程學系/林玠廷 助理教授】
論文篇名 | 英文:Scalable Post-Treatment for Improved Self-Assembled Monolayer Coverage in Perovskite Solar Cells 中文:可擴展的後處理可改善鈣鈦礦太陽能電池的自組裝單層覆蓋率 |
期刊名稱 | Sustainable Energy Fuels |
發表年份,卷數,起迄頁數 | 2024 ,8, 5399-5406 |
作者 | Qiu, Wei-Jia; Li, Yun-Shan; Lin, Chieh-Ting(林玠廷)* |
DOI | 10.1039/D4SE01365D |
中文摘要 | 鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)因其可調的能隙、低溫製程以及高光電轉換效率(Power Conversion Efficiency, PCE),正迅速成為下一代光伏技術。在透明導電氧化物(Transparent Conducting Oxides, TCOs)上實現均勻且有效的自組裝單分子層(Self-Assembled Monolayers, SAMs)覆蓋,對優化PSC的性能至關重要,因為不均勻的SAM覆蓋會導致表面復合、漏電流增加及效率下降。本研究提出一種低成本且可在空氣中操作的「冷卻水汽凝結法」(Cooled Moisture Condensation, CMC),以提升MeO-2PACz SAMs在氟摻雜氧化錫(FTO)基板上的覆蓋效果。透過在環境空氣中冷卻FTO,使水汽均勻凝結,增加表面羥基(-OH)數量並減少氧空缺,從而提升SAM的鍵結能力與覆蓋率。導電原子力顯微鏡(C-AFM)及掃描電子顯微鏡(SEM)證實CMC處理提升了SAM的覆蓋率,減少了漏電流,並改善了鈣鈦礦薄膜的品質。電容-電壓(C-V)測量顯示較高的內建電位(Vbi),而開路電壓衰減(OCVD)與瞬態光電流衰減(TPC)分析則顯示出更高效的電荷萃取及降低的復合現象。最終,使用CMC處理基板製作的PSC展現出更優異的性能與再現性,顯示此方法在高效率且可擴展的太陽能電池生產中具有相當潛力。 |
英文摘要 | Perovskite solar cells (PSCs) are rapidly emerging as a next-generation photovoltaic technology due to their tunable band gap, low-temperature processing, and high power conversion efficiency (PCE). Achieving uniform and effective coverage of self-assembled monolayers (SAMs) on transparent conducting oxides (TCOs) is critical for optimizing PSC performance, as non-uniform SAM coverage can lead to surface recombination, higher leakage currents, and reduced efficiency. In this study, we introduce a low-cost, air-processible method—Cooled Moisture Condensation (CMC)—to enhance the coverage of MeO-2PACz SAMs on fluorine-doped tin oxide (FTO) substrates. By cooling the FTO in ambient air, moisture condenses uniformly, increasing surface hydroxyl (-OH) groups and reducing oxygen vacancies, which improves SAM bonding and coverage. Conductive Atomic Force Microscopy (C-AFM) and Scanning Electron Microscope (SEM) confirm enhanced SAM coverage, reduced leakage current, and improved perovskite film quality. Capacitance-voltage (C-V) measurements reveal a higher built-in potential (Vbi), while open-circuit voltage decay (OCVD) and transient photocurrent decay (TPC) analyses demonstrate more efficient charge extraction and reduced recombination in CMC-treated devices. As a result, PSCs fabricated with CMC-treated substrates exhibit superior performance and reproducibility, highlighting the potential of this method for scalable, high-efficiency solar cell production. |
發表成果與本中心研究主題相關性 | 鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)在農業科技領域具有潛在的應用價值,特別是促進永續能源發展和智慧農業的推廣。PSC具備高光電轉換效率(PCE)、低溫製程和輕量化的優勢,使其適合應用於農業中的各種場景,如溫室灌溉系統、環境傳感器和照明設備。與傳統矽基太陽能電池相比,PSC的製造成本較低且能隙可調,能提升能源使用效率,減少農業對傳統能源的依賴。本研究提出的「冷卻水汽凝結法」(CMC),能顯著提升PSC元件中透明導電氧化物(TCO)基板的自組裝單分子層(SAMs)覆蓋率,進一步優化電池性能和穩定性。這種提升有助於PSC在農業場景中的可靠應用,如在農光互補系統中,將PSC安裝於溫室屋頂或大棚,不僅提高土地利用效率,還能優化作物生長環境。同時,PSC可為農村或偏遠地區提供清潔能源,推動智慧農業中的自動化灌溉、氣象監測和環境控制系統。 |