設施農業:農業綠能開發與碳匯補償【化學工程學系陳志銘 特聘教授】
論文篇名 | 英文:Efficient Hydrogen and Oxygen Evolution: Dual-Functional Electrocatalyst of Zinc Iron Layered Double Hydroxides and Nickel Cobalt Sulfides on Nickel Foam for Seawater Splitting 中文:高效率析氫和析氧:泡沫鎳上鋅鐵層狀雙氫氧化物和鎳鈷硫化物的雙功能電催化劑應用於海水分解 |
期刊名稱 | ACS Applied Energy Materials |
發表年份,卷數,起迄頁數 | 2024, 7, 7260 |
作者 | Vedanarayanan, Mahalakshmi; Chen, Chih-Ming(陳志銘)*; Sethuraman, Mathur Gopalakrishnan |
DOI | 10.1021/acsaem.4c01290 |
中文摘要 | 氫源自水分解,可望成為永續能源載體。然而,替代化石燃料需要大量的純淨水,而這種資源在全球許多地區都是稀缺的。本研究的重點是開發一種應用於海水分解的高效電催化劑,旨在保護淡水資源並克服與直接利用海水相關的挑戰。鋅鐵層狀雙氫氧化物與泡沫鎳上的鎳鈷硫化物結合(ZnFe LDH@NiCoS/NF)可在鹼性海水分解中有效運行,其中涉及氫和氧的析出反應。透過使用鹼化電解液和合適的泡沫鎳基材,可以有效減輕腐蝕和氯氧化反應的不利影響。複合材料ZnFe LDH@NiCoS/NF 在鹼性海水中表現出卓越的電催化功效,析氫反應(HER) 需要246.3 mV 的過電勢,析氧反應(OER) 需要284.8 mV 的極小過電勢才能達到目標電流密度。此外,複合電催化劑的析氫反應 (HER) 塔菲爾值降低至 74.6 mV dec-1,析氧反應 (OER) 塔菲爾值降低至 81.5 mV dec-1,顯示動力學增強。這種改進的電催化性能歸因於表面積的增加和電荷轉移電阻的降低。此外,催化電極表現出令人印象深刻的長期穩定性,在恆定電流密度下,HER 和 OER 的效率保持約 50 小時。這項研究強調了ZnFe LDH@NiCoS/NF的創新特性,作為HER和OER雙功能電催化劑研究的關鍵突破,為利用海水中的再生能源提供了一個充滿希望的方向。 |
英文摘要 | Hydrogen, derived from water splitting, holds promise as a sustainable energy carrier. However, replacing fossil fuels demands large volumes of pure water, a resource that is scarce in numerous regions globally. This study focuses on developing an efficient electrocatalyst for seawater splitting, aiming to conserve freshwater resources and overcome the challenges associated with direct utilization of seawater. Zinc iron layered double hydroxides combined with nickel cobalt sulfides on nickel foam (ZnFe LDH@NiCoS/NF) are produced to operate efficiently in alkaline seawater splitting, which involves the evolution reactions of hydrogen and oxygen. Through the utilization of an alkalinized electrolyte and suitable nickel foam substrates, the adverse effects of corrosion and chlorine oxidation reactions are effectively mitigated. The composite ZnFe LDH@NiCoS/NF exhibits exceptional electrocatalytic efficacy in alkaline seawater, needing remarkably minimal overpotentials of 246.3 mV for the hydrogen evolution reaction (HER) and 284.8 mV for the oxygen evolution reaction (OER) to attain the targeted current density. Additionally, the composite electrocatalyst exhibits decreased Tafel values of 74.6 mV dec–1 for the hydrogen evolution reaction (HER) and 81.5 mV dec–1 for the oxygen evolution reaction (OER), suggesting enhanced kinetics. This improved electrocatalytic performance is attributed to the increased surface area and decreased charge transfer resistance. Additionally, the catalytic electrode exhibits impressive long-term stability, maintaining efficiency for approximately 50 h at a constant current density for both the HER and the OER. This study emphasizes the innovative character of ZnFe LDH@NiCoS/NF as a crucial breakthrough in research on bifunctional electrocatalysts for the HER and the OER, presenting a hopeful direction for harnessing renewable energy from seawater. |
發表成果與本中心研究主題相關性 | 電解水產氫是可再生能源的重要發展策略,是提供設施農業自主能源供給的可行方向之一。 |