循環農業:農業廢棄物再資源化【生命科學系/黃介辰特聘教授】
論文篇名 | Growth Enhancement Facilitated by Gaseous CO2 through Heterologous Expression of Reductive Tricarboxylic Acid Cycle Genes in Escherichia coli |
期刊名稱 | FERMENTATION-BASEL |
發表年份,卷數,起迄頁數 | 2021, 7(2): 98 |
作者 | Lo, Shou-Chen; Chiang, En-Pei Isabel(蔣恩沛); Yang, Ya-Tang; Li, Si-Yu(李思禹); Peng, Jian-Hau; Tsai, Shang-Yieng; Wu, Dong-Yan; Yu, Chia-Hua; Huang, Chu-Han; Su, Tien-Tsai; Tsuge, Kenji; Huang, Chieh-Chen(黃介辰)* |
DOI | 10.3390/fermentation7020098 |
英文摘要 | The enzymatic mechanisms of carbon fixation by autotrophs, such as the reductive tricarboxylic acid cycle (rTCA), have inspired biotechnological approaches to producing bio-based chemicals directly through CO2. To explore the possibility of constructing an rTCA cycle in Escherichia coli and to investigate their potential for CO2 assimilation, a total of ten genes encoding the key rTCA cycle enzymes, including alpha-ketoglutarate:ferredoxin oxidoreductase, ATP-dependent citrate lyase, and fumarate reductase/succinate dehydrogenase, were cloned into E. coli. The transgenic E. coli strain exhibited enhanced growth and the ability to assimilate external inorganic carbon with a gaseous CO2 supply. Further experiments conducted in sugar-free medium containing hydrogen as the electron donor and dimethyl sulfoxide (DMSO) as the electron acceptor proved that the strain is able to undergo anaerobic respiration, using CO2 as the major carbon source. The transgenic stain demonstrated CO2-enhanced growth, whereas the genes involved in chemotaxis, flagellar assembly, and acid-resistance were upregulated under the anaerobic respiration. Furthermore, metabolomic analysis demonstrated that the total concentrations of ATP, ADP, and AMP in the transgenic strain were higher than those in the vector control strain and these results coincided with the enhanced growth. Our approach offers a novel strategy to engineer E. coli for assimilating external gaseous CO2. |
發表成果與本中心研究主題相關性 | 利用合成生物學建構rTCA固碳基至於大腸桿菌中,未來可結合於纖維素分解、生質能生產等機制,完成同時固碳、分解農業廢棄物、生產生質能之永續農業發展。 |