Recycling Agriculture: Recycling of Agricultural Waste and Biological TreatmentDepartment of Soil Environmental Sciences /Shen, Fo-Ting / Associate Professor
循環農業:農業有機廢棄物生物處理再利用【土壤環境科學系/沈佛亭副教授】
論文篇名 英文:Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19
中文:茶葉中揮發性氣體辛醇促進葉圈細菌Pseudomonas sp. NEEL19細胞分裂與吲哚乙酸生成
期刊名稱 Scientific Reports
發表年份,卷數,起迄頁數 2021, 11, 2788
作者 Neelakandan, Poovarasan; Young, Chiu-Chung(楊秋忠)*; Hameed, Asif(哈錫夫)*; Wang, Yu-Ning; Chen, Kui-Nuo; Shen, Fo-Ting(沈佛亭)*
DOI 10.1038/s41598-021-82442-7
中文摘要 茶葉中存在許多影響其風味之揮發性有機化合物,其中有些化合物已被證明具有抑菌活性。本研究旨在探討茶葉萃取物對葉圈細菌生長與其生成吲哚乙酸能力之影響。研究中自葉面分離獲得一株具有機溶劑耐受性之菌株Pseudomonas sp. NEEL19,透過氣相層析、顯微鏡檢與培養試驗,證明茶葉成分中的辛醇可促進葉圈菌株之細胞分裂、代謝活性、移動性與吲哚乙酸生成能力。另得知揮發性辛醇具有調控細菌代謝活性之效應,若直接與菌體接觸則無上述影響。本研究首度提出茶葉中之辛醇具調控細菌代謝活性之潛力。
英文摘要 Tea leaves possess numerous volatile organic compounds (VOC) that contribute to tea’s characteristic aroma. Some components of tea VOC were known to exhibit antimicrobial activity; however, their impact on bacteria remains elusive. Here, we showed that the VOC of fresh aqueous tea leaf extract, recovered through hydrodistillation, promoted cell division and tryptophan-dependent indole-3-acetic acid (IAA) production in Pseudomonas sp. NEEL19, a solvent-tolerant isolate of the tea phylloplane. 1-octanol was identified as one of the responsible volatiles stimulating cell division, metabolic change, swimming motility, putative pili/nanowire formation and IAA production, through gas chromatography-mass spectrometry, microscopy and partition petri dish culture analyses. The bacterial metabolic responses including IAA production increased under 1-octanol vapor in a dose-dependent manner, whereas direct-contact in liquid culture failed to elicit such response. Thus, volatile 1-octanol emitting from tea leaves is a potential modulator of cell division, colonization and phytohormone production in NEEL19, possibly influencing the tea aroma.
發表成果與本中心研究主題相關性 本研究旨在探討茶葉萃取物對葉圈細菌生長與其生成吲哚乙酸能力之影響,證明辛醇可促進葉圈菌株之細胞分裂、代謝活性、移動性與吲哚乙酸生成能力,研究成果有助於生物刺激素之開發,並應用於茶樹健康管理與永續發展。