【學術亮點】Photocurrent enhancement in dye-sensitized solar cells by polyimide covalent organic frameworks decorated with silver nanoparticles
Facility Agricultural: Green Energy Development and Carbon Offset【Department of Chemical Engineering / Chen, Chih-Ming/ Distinguished Professor】
設施農業:農業綠能開發與碳匯補償【化學工程學系陳志銘 特聘教授】
| 論文篇名 | 英文:Photocurrent enhancement in dye-sensitized solar cells by polyimide covalent organic frameworks decorated with silver nanoparticles 中文:以銀奈米粒子修飾的聚醯亞胺共價有機框架增強染料敏化太陽能電池的光電流 |
| 期刊名稱 | Journal of Photochemistry & Photobiology, A: Chemistry |
| 發表年份,卷數,起迄頁數 | 2025, 459, no.116052 |
| 作者 | Chen, Yu-Hsuan; Huang, Chao-Fang; Lo, Ting-Yu; Sil, Manik Chandra; Chen, Chih-Ming(陳志銘)* |
| DOI | 10.1016/j.jphotochem.2024.116052 |
| 中文摘要 | 共價有機框架具有高度有序的共軛六邊形陣列結構,因其在新興能源和光電技術中的應用潛力而備受關注。聚醯亞胺基共價有機框架具有鹼水解醯亞胺單元,可作為金屬奈米粒子的吸附位點,其多功能性特別引人注目。本研究透過鹼水解、離子交換和還原反應,將粒徑為5至20奈米的銀奈米粒子均勻吸附在球形聚醯亞胺基共價有機框架表面。將銀修飾的聚醯亞胺基共價有機框架摻雜到染料敏化太陽能電池的二氧化鈦光電極中,以探索其多功能性對光伏性能的影響。摻雜銀之聚醯亞胺基共價有機框架的染料敏化太陽能電池在模擬單太陽光照下光電轉換效率達到8.03%,較未摻雜的染料敏化太陽能電池(6.86%)顯著提高,光電流從15.14 mA cm−2增強至17.31 mA cm−2。染料負載量、電化學阻抗、電子動力學和光吸收等綜合分析證實摻雜銀之聚醯亞胺基共價有機框架的多功能性。 銀奈米粒子的局部表面等離子體共振增強光電流,聚醯亞胺基共價有機框架的主客體相互作用促進電荷注入並抑制電荷複合。 |
| 英文摘要 | Covalent organic framework (COF), featuring in highly ordered conjugated hexagonal array architecture, gains much attention due to their application potential in emerging energy and optoelectronic technologies. Polyimide-based COF (PI-COF) has alkaline-hydrolyzable imide units that can serve as adsorption sites for the anchorage of metallic nanoparticles, particularly eye-catching for multifunctionality. In this study, Ag nanoparticles (Ag NPs) sizing 5 to 20 nm are evenly attached on the surface of spherical PI-COFs through alkaline hydrolysis, ion exchange, and reduction reactions. The Ag-decorated COF (COF@Ag) are doped into the titania photoelectrode of dye-sensitized solar cell (DSSC) to explore its multifunctionality for the photovoltaic performance. The DSSC with the doping of COF@Ag exhibits a power conversion efficiency of 8.03 % under simulated one sun illumination, outperforming that without the doping of COF@Ag (6.86 %) by an enhancement in the photocurrent from 15.14 mA cm−2 to 17.31 mA cm−2. Comprehensive analyses including dye loading, electrochemical impedance, electron kinetics, and light absorption confirms the multifunctionality of COF@Ag. Localized surface plasmon resonance (LSPR) of Ag NPs enhances the photocurrent, and host–guest interaction of COFs facilitates the charge injection and suppresses the charge recombination. |
| 發表成果與本中心研究主題相關性 | 太陽能電池是可再生能源的重要發展策略,是提供設施農業自主能源供給的可行方向之一。 |
