生態農業:土壤碳蓄存之預測模型優化及驗證【材料科學與工程學系/薛涵宇副教授】
論文篇名 | 英文:Morphological Diagram of Dynamic-Interfacial-Release-Induced Surface Instability 中文:動態界面釋放誘導之表面不穩定性相貌型態圖 |
期刊名稱 | ACS Applied Materials & Interfaces |
發表年份,卷數,起迄頁數 | 2023, 15, 32, 38975–38985 |
作者 | Lai, Yu-Fang; Chang, Meng-Yuan; Liou, Yan-Yu; Lee, Chang-Chun; Hsueh, Han-Yu(薛涵宇)* |
DOI | 10.1021/acsami.3c07497 |
中文摘要 | 此研究量化並預測由彈性體和覆蓋層組成之雙層複合材料經由動態界面應變釋放所引起的多種表面不穩定模型,結合理論、實驗及模擬,系統性建立表面不穩定模型之相貌型態圖,如皺褶、褶疊、雙重周期、剝離和共存圖案。此相貌型態圖主要受三種實驗參數影響,包括彈性體、覆蓋層的彈性模量和覆蓋層厚度,可以協助理解複雜的不穩定模型形成及其應用發展,更重要的是能透過改變界面釋放方向、控制皺紋排列,創建公分尺寸之高度有序片狀皺褶模型,且無需昂貴高真空儀器或複雜製程,使此製程和圖表在實際應用中具潛力,範圍廣泛從柔性電子設備到智能窗戶皆可應用。 |
英文摘要 | In this study, a morphological diagram was constructed for quantitatively predicting various modes of surface instabilities caused by the dynamic interfacial release of strain in initially flat bilayer composites comprising an elastomer and a capping layer. Theory, experiment, and simulation were combined to produce the diagram, which enables systematic generation of the following instability patterns: wrinkle, fold, period-double, delamination, and coexisting patterns. The pattern that forms is most strongly affected by three experimental parameters: the elastic modulus of the elastomer, the elastic modulus of the capping layer, and the thickness of the capping layer. The morphological diagram offers understanding of the formation of complex patterns and development of their applications. Critically, the wrinkle alignment can be well controlled by changing the direction of the interfacial release to enable the creation of centimeter-sized and highly ordered lamellar wrinkled patterns with a single orientation on a soft elastomer without the need for costly high-vacuum instruments or complex fabrication processes. The method and diagram have great potential for broad use in many practical applications ranging from flexible electronic devices to smart windows. |
發表成果與本中心研究主題相關性 | 大部分的農具在運作時會與生物接觸,為避免生物體的附著造成農具表面受損,需要開發一些抗汙表減少及預防這類問題的發生,其中一種方式為利用表面的物理形貌,如皺褶結構、圖案化表面和起伏結構進行抗汙表面的開發,相較於平滑表面,這類的微結構可以降低生物附著的點接觸面積,使生物難以附著或生長。而本研究團隊先前的研究也證實皺褶等不穩定結構將有助於減少生物汙垢的附著,並且具有良好的自清潔,抗冰、自修復等特性。然而,關於皺褶結構的生成及模型,還有許多可以探討的空間,因此藉由本研究系統性探討多樣的不穩定界面形成隻模型,協助皺褶等多種表面形貌在抗汙及抗生物附著方面於農具或生活中的應用。 |