設施農業:光能設施於農業固碳之應用【化學工程學系/林玠廷 助理教授】
論文篇名 | 英文:Overcoming Microstructural Defects at the Buried Interface of Formamidinium-Based Perovskite Solar Cells 中文:克服甲脒基鈣鈦礦太陽能電池埋藏界面的微觀結構缺陷 |
期刊名稱 | ACS Applied Materials & Interfaces |
發表年份,卷數,起迄頁數 | 2024, 16(36), 47763-47772 |
作者 | Lin, Heng-Yi; Jiang, Zhongyao; Liu, Shi-Chun; Du, Zhaoyi; Hsu, Shih-En; Li, Yun-Shan; Qiu, Wei-Jia; Yang, Hongta; Macdonald, Thomas J.; Mclachlan, Martyn A.; Lin, Chieh-Ting(林玠廷)* |
DOI | 10.1021/acsami.4c11052 |
中文摘要 | 自從甲脒基鈣鈦礦光伏問世以來,其性能已獲得顯著提升。仍然存在著一個關鍵挑戰:鈣鈦礦薄膜在埋藏界面與傳輸層界面之交界處容易形成空隙,對設備性能產生不利影響。隨著大多數新興鈣鈦礦光伏採用 p-i-n 結構,具體挑戰出現在鈣鈦礦與空穴傳輸層(HTL)的界面。此前的解決策略僅限於特定的鈣鈦礦和HTL 組合,因此缺乏通用方法成為瓶頸。本文提出了一種新穎的策略,通過使用氯化甲胺(MACl)對薄膜進行處理,以克服這些空隙(微觀結構缺陷)的形成。我們通過逐步沉積法並引入了 MACl,對關鍵的埋藏界面之微觀結構缺陷密度產生影響。此技術與 HTL 類型和鈣鈦礦薄膜厚度無關,凸顯了其普遍性。通過設備的光致發光測量和導電原子力顯微鏡分析,我們發現這些空隙會阻礙電荷提取,從而降低設備的短路電流。通過全面的穩態和瞬態光致發光光譜分析,我們證明通過實施 MACl 處理來修復這些空隙,鈣鈦礦層的缺陷態減少,非輻射復合被抑制,並且載流子壽命延長至 2.3 微秒。此外我們的新穎處理方法減少了對反溶劑的選擇及滴加時間的嚴格限制,顯著擴展了鈣鈦礦吸收層的製備工藝窗口,並為設備製造提供了更大的靈活性。 |
英文摘要 | Since the advent of formamidinium (FA)-based perovskite photovoltaics (PVs), significant performance enhancements have been achieved. However, a critical challenge persists: the propensity for void formation in the perovskite film at the buried perovskite–interlayer interface has a deleterious effect on device performance. With most emerging perovskite PVs adopting the p-i-n architecture, the specific challenge lies at the perovskite–hole transport layer (HTL) interface, with previous strategies to overcome this limitation being limited to specific perovskite–HTL combinations; thus, the lack of universal approaches represents a bottleneck. Here, we present a novel strategy that overcomes the formation of such voids (microstructural defects) through a film treatment with methylammonium chloride (MACl). Specifically, our work introduces MACl via a sequential deposition method, having a profound impact on the microstructural defect density at the critical buried interface. Our technique is independent of both the HTL and the perovskite film thickness, highlighting the universal nature of this approach. By employing device photoluminescence measurements and conductive atomic force microscopy, we reveal that when present, such voids impede charge extraction, thereby diminishing device short-circuit current. Through comprehensive steady-state and transient photoluminescence spectroscopy analysis, we demonstrate that by implementing our MACl treatment to remedy these voids, devices with reduced defect states, suppressed nonradiative recombination, and extended carrier lifetimes of up to 2.3 μs can be prepared. Furthermore, our novel treatment reduces the stringent constraints around antisolvent choice and dripping time, significantly extending the processing window for the perovskite absorber layer and offering significantly greater flexibility for device fabrication. |
發表成果與本中心研究主題相關性 | 本研究針對甲脒基鈣鈦礦光伏技術的突破,尤其是解決薄膜界面缺陷的關鍵技術,與本中心的科技農業主題密切相關。鈣鈦礦光伏技術作為下一代高效、低成本的能源技術,為農業領域的智能設施供電、精準灌溉以及農業數據傳輸提供了潛在解決方案。通過改善鈣鈦礦光伏元件的穩定性與效率,我們可以實現更高效的農業電力供應系統,促進自動化農業技術的發展。此外鈣鈦礦光伏材料的低成本和靈活性,能夠推動可再生能源在農業設施中的應用,特別是在農業溫室或偏遠農業地區的自給式能源系統上。本研究所提出的薄膜處理方法,將大幅提升鈣鈦礦光伏設備的耐久性與應用範圍,對於科技農業領域的能源應用具有重要的推動作用。 |