【學術亮點】Desert beetle-inspired fog-harvesting surfaces integrating buckled microchannels and alternating wettability
Ecological Agriculture: Optimization and Validation of Soil Carbon Sequestration Prediction Models【Department of Materials Science Engineering / Hsueh, Han-Yu / Professor】
生態農業:土壤碳蓄存之預測模型優化及驗證【材料科學與工程學系/薛涵宇教授】
| 論文篇名 | 英文:Desert beetle-inspired fog-harvesting surfaces integrating buckled microchannels and alternating wettability 中文:仿沙漠甲蟲的捕霧表面,融合起伏(皺褶)微通道與交錯親疏水設計 |
| 期刊名稱 | Journal of Materials Chemistry A |
| 發表年份,卷數,起迄頁數 | 2025, 13, 36125-36139 |
| 作者 | Xu, Ting-Yu; Hung, Chun-Chen; Juan, Chieh-Yun; Tseng, Pei-Chieh; Hsueh, Han-Yu(薛涵宇)* |
| DOI | 10.1039/D5TA05905D |
| 中文摘要 | 本研究提出一種新穎的捕霧集水表面,其特徵為受沙漠甲蟲鞘翅啟發的皺褶微結構與交替親疏水區域。製備上,先在疏水性的聚四氟乙烯(PTFE)皺褶圖樣上分散親水性二氧化矽(SiO₂)微粒。親水性凸起可促進液滴凝結與捕獲;疏水性皺褶表面則類似微通道,能導引液滴定向移動以提升集水效率。與平坦表面相比,皺褶結構可使集水效率提升約 30%。本研究並將交替潤濕性設計與全親水、全疏水表面進行系統性比較,探討多項參數(包括霧流距離、親水微粒組成、表面潤濕性分佈與皺褶對齊)之影響。此外,我們引入鳥巢蕨葉片具漏斗狀生長幾何的概念,引導凝結液滴匯集至收集區,形成雙重仿生機制:微尺度上仿沙漠甲蟲的結構,與宏尺度上仿蕨類的幾何相結合。實際場域測試——於森林環境進行的整夜集霧實驗——進一步驗證了本裝置的優異性能。值得注意的是,整個製程皆可在環境條件下完成,無需高真空技術與昂貴設備。所開發之高效捕霧裝置具可量產、永續且低成本的優勢,可望為缺水地區的大氣集水提供實用解決方案,改善用水可近性。 |
| 英文摘要 | In this study, we present a novel fog-harvesting surface featuring buckled microstructures with alternating hydrophilic–hydrophobic regions, inspired by the elytra of desert beetles. The surface was fabricated by dispersing hydrophilic SiO2 particles on hydrophobic polytetrafluoroethylene (PTFE) buckled patterns. The hydrophilic protrusions promote droplet condensation and capture, whereas the hydrophobic buckled surfaces, functioning similarly to microchannels, facilitate directional transport to enhance water collection. Compared to flat surfaces, buckled structures can improve water collection efficiency by approximately 30%. This design with alternating wettability was systematically compared with fully hydrophilic and fully hydrophobic surfaces. Various parameters, including the fog flow distance, hydrophilic particle composition, surface wettability distribution, and buckle alignment, were investigated. Furthermore, the geometric funnel-shaped growth pattern of bird's nest fern leaves was incorporated to guide condensed droplets toward the collection zone, forming a dual-biomimetic mechanism that integrates microscale desert beetle-inspired structures with macroscale fern-inspired geometry. Real-world field tests—specifically, overnight fog collection experiments conducted in a forest environment—further confirmed the excellent performance of our device. Notably, the entire fabrication process can be conducted under ambient conditions; high-vacuum techniques and costly equipment are not required. The developed high-efficiency fog-harvesting device offers a scalable, sustainable, and inexpensive solution to atmospheric water collection, contributing to improved water accessibility in water-scarce regions. |
| 發表成果與本中心研究主題相關性 | 本研究以低成本、常壓製程打造雙仿生集霧表面,能在山區/沿海高霧時段被動回收水分,作為灌溉與微灌之補充水源,降低抽蓄與輸配成本;亦可整合於溫室覆膜/遮陽網,支援智慧農業的離網用水與氣候韌性。 |
