【學術亮點】利用先進的高熵層狀雙氫氧化物奈米針進行電化學增強氧氣析出和尿素氧化反應
【學術亮點】Electrochemically Enhanced Oxygen Evolution and Urea Oxidation Reactions with Advanced High-Entropy LDH Nanoneedles
Facility Agricultural: Green Energy Development and Carbon OffsetDepartment of Chemical Engineering / Chen, Chih-Ming/ Distinguished Professor
設施農業:農業綠能開發與碳匯補償【化學工程學系陳志銘 特聘教授】
論文篇名 英文:Electrochemically Enhanced Oxygen Evolution and Urea Oxidation Reactions with Advanced High-Entropy LDH Nanoneedles
中文:利用先進的高熵層狀雙氫氧化物奈米針進行電化學增強氧氣析出和尿素氧化反應
期刊名稱 Sustainable Energy & Fuels
發表年份,卷數,起迄頁數 2025, 9, 1829-1838
作者 Pitchai, Chandrasekaran; Chen, Chih-Ming(陳志銘)*
DOI 10.1039/D5SE00054H
中文摘要 本研究描述一種新型高熵層狀雙氫氧化物奈米針的合成方法,該奈米針採用簡單的水熱法,以經濟高效的活性非貴金屬過渡元素鐵、鈷、鉻、錳和鋅為原料,合成用於電催化的高熵層狀雙氫氧化物。利用場發射掃描電子顯微鏡、場發射穿透電子顯微鏡、X射線繞射、X射線光電子能譜和電感耦合等離子體發射光譜表徵合成的高熵層狀雙氫氧化物的結構和元素組成。利用線性掃描伏安法、循環伏安法、計時電位法和電化學阻抗譜等方法分析其對析氧反應和尿素氧化反應的電催化活性。所得高熵層狀雙氫氧化物在鹼性介質中表現出優異的析氧反應和尿素氧化反應電催化性能。具體而言,優化後的高熵層狀雙氫氧化物表現出較低的過電位,相對於RHE僅為185 mV,電流密度達到10 mA cm−2,最小塔菲爾斜率為49.7 mV dec−1。該觸媒優於其他三元和四元層狀雙氫氧化物。對於尿素氧化反應,高熵層狀雙氫氧化物表現出非常低的電位,相對於Hg/HgO僅為250 mV。高熵層狀雙氫氧化物表現出卓越的電催化析氧反應性能,這體現在其較高的固有活性,包括週轉頻率。此外,高熵層狀雙氫氧化物電催化劑在60小時內表現出卓越的穩定性,並具有作為析氧反應催化劑在工業上實際應用的潛力。
英文摘要 This study describes the synthesis of innovative high-entropy layered double hydroxide (HE-LDH) nanoneedles, achieved through a straightforward hydrothermal method using a combination of cost-effective active non-noble transition elements, Fe, Co, Cr, Mn, and Zn (denoted as FCCMZ), for electrocatalysis. The structure and elemental composition of the synthesised HE-FCCMZ LDH were characterised by FE-SEM, FE-TEM, XRD, XPS, and ICP-OES. The electrocatalytic activity for the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) was analysed by LSV, CV, chronopotentiometry, and EIS methods. The resulting HE-FCCMZ LDH, exhibited superior performance in the electrocatalytic OER and UOR in alkaline medium. Specifically, the optimized HE-FCCMZ LDH sample demonstrated a low overpotential of 185 mV vs. RHE to achieve a current density of 10 mA cm−2, with a minimal Tafel slope of 49.7 mV dec−1. It is superior to other ternary and quaternary LDHs. For the UOR, HE-FCCMZ LDH demonstrated a very low potential of 250 mV vs. Hg/HgO. The HE-FCCMZ LDH demonstrated remarkable electrocatalytic OER performance, as evidenced by its high intrinsic activity, including the turnover frequency (TOF). Moreover, HE-FCCMZ LDH electrocatalysts showcased exceptional stability for 60 hours and hold potential for practical industrial use as OER catalysts.
發表成果與本中心研究主題相關性 電解水產氫是可再生能源的重要發展策略,是提供設施農業自主能源供給的可行方向之一。