【學術亮點】Hetero-atom-doped biochar as a sustainable catalyst for value-added upgrading of lignin derivatives: Optimizing dopant for enhancing conversion
Recycling Agriculture: Valorization of Agricultural Residual Materials【Department of Environmental Engineering / Lin, Kun-Yirew / Distinguished Professor】
循環農業:農業剩餘資材及生質衍生物高值化轉換再利用【環境工程學系/林坤儀特聘教授】
| 論文篇名 | 英文:Hetero-atom-doped biochar as a sustainable catalyst for value-added upgrading of lignin derivatives: Optimizing dopant for enhancing conversion 中文:異原子摻雜生物炭作為可持續催化劑,用於木質素衍生物的增值轉化:優化摻雜元素以提升轉化效率 |
| 期刊名稱 | Journal of Environmental Chemical Engineering |
| 發表年份,卷數,起迄頁數 | 2025,13(3), no. 116940 |
| 作者 | Thuy, Vo Thi Thanh; Wu, Hua-Chen; Tsai, Yu-chih; Khiem, Ta Cong; Lin, Yi-Feng; Bui, Ha Manh; Tsang, Yiu Fai; Lin, Kun-Yi Andrew(林坤儀)* |
| DOI | 10.1016/j.jece.2025.116940 |
| 中文摘要 | 將木質纖維素衍生物轉化為高附加值與精細化學品,為生質資源利用提供了一條永續的發展途徑。在本研究中,我們以廢棄芒果皮為原料,製備出磷摻雜生物炭(CPM),作為一種綠色且無金屬的催化劑,用於木質素衍生分子——香草醇(vanillyl alcohol, VAL)氧化生成香草醛(vanillin, VLN)的反應。 CPM 催化劑經過 800 °C 碳化 2 小時製得,並系統探討了不同磷摻雜條件對材料結構與化學特性的影響。利用掃描電子顯微鏡(SEM)、比表面積分析(BET)、X 射線繞射(XRD)與 傅立葉轉換紅外光譜(FTIR)等分析方法,結果顯示磷的摻雜明顯提升了生物炭的比表面積與孔體積,並引入了如 C–P–O 等官能團,這些改變對催化活性起到關鍵作用。 此外,透過 密度泛函理論(DFT)計算,從原子層級深入理解磷摻雜對材料電子結構與反應活性的影響。催化實驗結果表明,CPM 可在無需外加氧化劑或金屬催化劑的條件下,高效催化 VAL 氧化反應,並達到高轉化率與高選擇性。 機制研究透過原位紅外光譜與電子順磁共振(EPR)揭示,磷官能團在促進非自由基路徑反應與單重態氧(¹O₂)生成中扮演關鍵角色。同時也探討了加熱方式、反應溫度、反應時間及催化劑劑量等操作條件對反應的影響。 CPM 催化劑在多次循環使用後仍表現出優異的穩定性與可重複使用性,在 120 °C、2 小時的條件下可實現 100 % 的 VAL 轉化率與 100 % 的 VLN 選擇性。 本研究不僅推進了木質素衍生物的永續增值利用,也突顯出磷修飾在調控碳基催化劑結構與活性、促進高效綠色化學轉化中的重要性。 |
| 英文摘要 | Valorization of lignocellulose derivatives into valuable and fine chemicals offers a sustainable pathway for biomass utilization. In this work, we developed phosphorus-doped biochar (CPM) from waste mango peels as a green and non-metal catalyst for the oxidation of vanillyl alcohol (VAL), a lignin-derived molecule, into vanillin (VLN). The CPM catalyst were synthesized through a complete carbonization process at 800 °C for 2 hours. Different phosphorus doping conditions were investigated to explore their impact on the textural and chemical characteristics of the materials. Comprehensive analyses (Scanning Electron Microscopy – SEM, Brunauer-Emmett-Teller – BET, X-ray Diffraction – XRD, and Fourier Transform Infrared Spectroscopy – FTIR) revealed that phosphorus doping significantly enhanced surface area, pore volume, and introduced functional groups such as C-P-O, which were pivotal for catalytic performance. The Density Functional Theory (DFT) calculations were also applied to gain a deeper understanding of the effect of phosphorous doping at the atomic level. Catalytic studies demonstrated that CPM exhibited remarkable activity for VAL oxidation without requiring external oxidants or metal catalysts, achieving high conversion and selectivity. Mechanistic insights derived from in-situ infrared spectroscopy and electron paramagnetic resonance (EPR) revealed the vital role of phosphorus functionalities in promoting non-radical pathways and facilitating singlet oxygen formation. The effects of operating conditions such as heating method, reaction temperature, reaction time and catalyst dosage were also investigated. The CPM catalyst also showed excellent stability and reusability across multiple cycles with 100 % VAL conversion and 100 % VLN selectivity at 120 °C for 2 hours. This research not only advances the sustainable valorization of lignin derivatives but also underscores the significance of phosphorus modification in tailoring carbon-based catalysts for efficient and green chemical transformations. |
| 發表成果與本中心研究主題相關性 | 透過本研究可進一步建立開發本研究計算所需之觸媒材料,並釐清可適合應用之環境條件! |
