【學術亮點】調節層狀雙氫氧化物從三金屬到高熵奈米材料以增強鹼性環境中的氧氣釋放
【學術亮點】Tuning Layered Double Hydroxides from Trimetallic to High-Entropy Nanomaterials for Enhanced Oxygen Evolution in Alkaline Environments
Facility Agricultural: Green Energy Development and Carbon OffsetDepartment of Chemical Engineering / Chen, Chih-Ming/ Distinguished Professor
設施農業:農業綠能開發與碳匯補償【化學工程學系陳志銘 特聘教授】
論文篇名 英文:Tuning Layered Double Hydroxides from Trimetallic to High-Entropy Nanomaterials for Enhanced Oxygen Evolution in Alkaline Environments
中文:調節層狀雙氫氧化物從三金屬到高熵奈米材料以增強鹼性環境中的氧氣釋放
期刊名稱 ACS Applied Nano Materials
發表年份,卷數,起迄頁數 2025, 8(40), 19558-19567
作者 Pitchai, Chandrasekaran; Huang, Chao-Fang; Chen, Chih-Ming(陳志銘)*
DOI 10.1021/acsanm.5c03590
中文摘要 富含多種金屬元素的層狀雙氫氧化物和高熵合金作為析氧反應的有效催化劑而備受關注。在本研究中,我們報告高熵鐵鈷鉻錳銅層狀雙氫氧化物的水熱合成方法,旨在開發經濟高效且耐用的電催化劑。使用場發射掃描電子顯微鏡、場發射穿透電子顯微鏡、X射線繞射、能量分散光譜與X射線光電子能譜進行的廣泛材料表徵,證實成功製備具有均勻元素分散和明確晶體結構的鐵鈷鉻錳銅層狀雙氫氧化物。在鹼性條件下測試時,鐵鈷鉻錳銅層狀雙氫氧化物與其三元 (鐵鈷鉻) 和四元 (鐵鈷鉻錳) 類似物相比表現出更優異的析氧反應性能。具體而言,鐵鈷鉻錳銅在 10 mA cm–2 時實現 295mV 的顯著低過電位和 119.5 mV dec–1 的塔菲爾斜率,表明其具有更有利的催化動力學。此外,鐵鈷鉻錳銅催化劑表現出優異的操作穩定性,在74小時內保持活性,且性能無明顯損失。總而言之,這些結果表明,鐵鈷鉻錳銅層狀雙氫氧化物是開發高效能穩定電催化劑的極具潛力的候選材料,有助於推動未來清潔和永續能源技術的進步。
英文摘要 Layered double hydroxides (LDHs) enriched with multiple metal elements and high-entropy alloys (HEAs) have gained attention as effective catalysts for the oxygen evolution reaction (OER). In this study, we report the hydrothermal synthesis of high-entropy FeCoCrMnCu (FCCMC) LDHs, aiming to develop cost-efficient and durable electrocatalysts. Extensive material characterization using FE-SEM, HR-TEM, XRD, EDX, and XPS confirmed the successful fabrication of FCCMC LDHs with uniform elemental dispersion and well-defined crystal structure. When tested under alkaline conditions, FCCMC LDHs displayed superior OER performance compared to their ternary (FeCoCr, FCC) and quaternary (FeCoCrMn, FCCM) analogs. Specifically, FCCMC achieved a notably low overpotential of 295 mV at 10 mA cm–2 and a Tafel slope of 119.5 mV dec–1, suggesting more favorable catalytic kinetics. Moreover, the FCCMC catalyst demonstrated impressive operational stability, maintaining activity over 74 h without significant performance loss. Collectively, these results identify FCCMC LDHs as a highly promising candidate for advancing efficient and stable electrocatalysts, supporting future progress in clean and sustainable energy technologies.
發表成果與本中心研究主題相關性 電解水產氫是可再生能源的重要發展策略,是提供設施農業自主能源供給的可行方向之一。