【學術亮點】Non-uniform strain synergistically induced by active centers driving efficient peroxymonosulfate activation: Sulfur doping-augmented oxygen vacancies
Recycling Agriculture: Valorization of Agricultural Residual Materials【Department of Environmental Engineering / Lin, Kun-Yirew / Distinguished Professor】
循環農業:農業剩餘資材及生質衍生物高值化轉換再利用【環境工程學系/林坤儀特聘教授】
| 論文篇名 | 英文:Non-uniform strain synergistically induced by active centers driving efficient peroxymonosulfate activation: Sulfur doping-augmented oxygen vacancies 中文:活性中心協同誘導的非均勻應變促進過氧單硫酸鹽高效活化:硫摻雜增強氧空位 |
| 期刊名稱 | Applied Catalysis B: Environment and Energy |
| 發表年份,卷數,起迄頁數 | 2025,378, no. 125576 |
| 作者 | Khiem, Ta Cong; Huy, Nguyen Nhat; Waclawek, Stanislaw; Ji, Jiayuan(日本東京大學); Chen, Wei-Hsin; Yu, Kuo-Pin; Tsang, Yiu Fai; Lin, Kun-Yi Andrew(林坤儀)* |
| DOI | 10.1016/j.apcatb.2025.125576 |
| 中文摘要 | 以過一硫酸氫鹽(PMS)活化為例,一個高效的催化劑通常需要具備特殊的結構或形貌特性。而晶格應變工程(lattice strain engineering)可藉由破壞晶體結構的均勻性來產生此種特殊性質。 在本研究中,透過硫摻雜(Sₓ)與點缺陷(氧空位,OVₓ)的協同效應,成功在材料中誘導出非均勻的晶格應變。低電負度、具有寬且極化的 3p 軌域的 S 原子取代了原始 Co₃O₄ 晶格(記為 S₀OV₀CO)中的部分 O 原子,使得鍵結的離子性降低、共價性增強,進而提高 Co–S 鍵中的電子密度。 同時,氧空位(OVₓ)的生成會移除 O²⁻ 離子,促進鄰近 Co 原子的電子離域化,並增加 Co 3d 軌域中未佔據態的密度。因此,在 Sₓ 含量與 OVₓ 密度最高的情況下,所得 S₃OV₃CO 表現出最優異的 PMS 活化能力(在排除比表面積影響後),其歸一化速率常數達 0.00854 min⁻¹·m⁻²·g⁻¹,高於不含硫摻雜的 S₀OV₃CO(0.00751 min⁻¹·m⁻²·g⁻¹)。 相比之下,氧空位在降低吸附能方面效果更顯著(由 −7.64 降至 −7.73 eV,對應一個與兩個 OVₓ),而硫摻雜隨摻雜量增加時雖僅略微提升活化能力(吸附能由 −6.83 至 −7.03 eV),但同時也促進了氧空位的形成。 最終,S₃OV₃CO/PMS 系統能夠產生多種反應性物種,並可在 8 分鐘內完全降解雙苯酮-2(benzophenone-2)與四環黴素(tetracycline)。 本研究提供了一種透過摻雜與缺陷交互作用所誘導的非均勻晶格應變,以調控金屬氧化物性質的全新思路與潛在應用方向。 |
| 英文摘要 | An effective catalyst, for peroxymonosulfate (PMS) activation as an example, requires at least one special structural or morphological property. Lattice strain engineering can create such a special property by disrupting the uniformity of the crystal structure. Herein, it is triggered by the simultaneous contribution of sulfur doping (Sₓ) and point defects (oxygen vacancies, OVₓ) to create non-uniform strain. Low-electronegativity S dopants with wide and polarized 3p orbitals replace the host O atoms in the lattice of pristine Co3O4 (denoted as S0OV0CO), reducing the ionic character but increasing the covalency of Co–S bonds, thereby increasing the Co’s electron density in these bonds. OVₓ, meanwhile, remove O2⁻ ions, increasing the delocalization of the surrounding Co and enhancing the unoccupied states’ density of Co 3d. Therefore, the highest Sₓ level and OVₓ density synergistically make S3OV3CO the most efficient PMS activator after excluding specific surface area, with a normalized rate constant of 0.00854 min⁻1⋅m⁻2⋅g (greater than 0.00751 min⁻1⋅m⁻2⋅g for S0OV3CO without Sₓ). Compared with OVₓ, more appreciable in reducing the adsorption energy (-7.64 to −7.73 eV for one and two OVₓ), Sₓ enhances the activation to a lesser extent with incremental Sₓ level (-6.83 to −7.03 eV for one and two S dopants), but it simultaneously augments the formation of OVₓ. Ultimately, S3OV3CO/PMS is capable of forming assorted reactive species, degrading outright benzophenone-2 and tetracycline within eight minutes. This study offers a singular prospect of tailoring properties of metal oxides through non-uniform strain induced by the interplay of dopants and defects. |
| 發表成果與本中心研究主題相關性 | 透過本研究可進一步建立開發本研究計算所需之觸媒材料,並釐清可適合應用之環境條件! |
